Gumbi
0.4.1

Getting Started:

  • Introduction

Examples:

  • The Cars Dataset
  • Simple Regression and Prediction
  • Multioutput Regression
  • Bayesian Optimization with the Botorch backend

API:

  • gumbi
Gumbi
  • Welcome to Gumbi’s documentation!
  • View page source

Welcome to Gumbi’s documentation!

Getting Started:

  • Introduction

Examples:

  • The Cars Dataset
    • Simple regression
    • Independent regression for each class in a category
    • Correlated multi-input regression across different classes in a category
    • Multi-output regression
    • Multi-input multi-output regression
    • Multi-dimensional regression
  • Simple Regression and Prediction
    • Setup
    • Building and fitting a model
    • Making predictions
    • Visualizing predictions
    • Higher-dimensional predictions and slicing
  • Multioutput Regression
    • Setup
    • Train Model
    • Marginal Parameter Predictions
    • Correlated Parameter Predictions
  • Bayesian Optimization with the Botorch backend
    • Single-output regression
    • Multi-output regression
    • Multi-input multi-output regression
    • Mixed categorical-continuous regression
    • Multi-input regression
    • Multi-output (Pareto front) optimization with qNEHVI

API:

  • gumbi
    • gumbi.aggregation
      • DataSet
      • MetaFrame
      • Standardizer
      • TidyData
      • WideData
    • gumbi.arrays
      • LayeredArray
      • LogitNormal
      • MVUncertainParameterArray
      • MultivariateNormalish
      • ParameterArray
      • UncertainArray
      • UncertainParameterArray
    • gumbi.plotting
      • ParrayPlotter
    • gumbi.regression
      • Regressor
    • gumbi.utils
      • GPyTorchInverseGammaPrior
      • gumbi.utils

Indices and tables

  • Index

  • Module Index

  • Search Page

Next

© Copyright 2021, John Goertz.

Built with Sphinx using a theme provided by Read the Docs.