Gumbi
0.4.1
Getting Started:
Introduction
Examples:
The Cars Dataset
Simple Regression and Prediction
Multioutput Regression
Bayesian Optimization with the Botorch backend
API:
gumbi
Gumbi
Welcome to Gumbi’s documentation!
View page source
Welcome to Gumbi’s documentation!
Getting Started:
Introduction
Examples:
The Cars Dataset
Simple regression
Independent regression for each class in a category
Correlated multi-input regression across different classes in a category
Multi-output regression
Multi-input multi-output regression
Multi-dimensional regression
Simple Regression and Prediction
Setup
Building and fitting a model
Making predictions
Visualizing predictions
Higher-dimensional predictions and slicing
Multioutput Regression
Setup
Train Model
Marginal Parameter Predictions
Correlated Parameter Predictions
Bayesian Optimization with the Botorch backend
Single-output regression
Multi-output regression
Multi-input multi-output regression
Mixed categorical-continuous regression
Multi-input regression
Multi-output (Pareto front) optimization with qNEHVI
API:
gumbi
gumbi.aggregation
DataSet
MetaFrame
Standardizer
TidyData
WideData
gumbi.arrays
LayeredArray
LogitNormal
MVUncertainParameterArray
MultivariateNormalish
ParameterArray
UncertainArray
UncertainParameterArray
gumbi.plotting
ParrayPlotter
gumbi.regression
Regressor
gumbi.utils
GPyTorchInverseGammaPrior
gumbi.utils
Indices and tables
Index
Module Index
Search Page